Hybrid Quantum-Classical Computer For Bayesian Inference With Engineered Likelihood Functions For Robust Amplitude Estimation

A hybrid quantum-classical (HQC) computer takes advantage of the available quantum coherence to maximally enhance the power of sampling on noisy quantum devices, reducing measurement number and runtime compared to VQE. The HQC computer derives inspiration from quantum metrology, phase estimation, and the more recent “alpha-VQE” proposal, arriving at a general formulation that is robust to error and does not require ancilla qubits. The HQC computer uses the “engineered likelihood function” (ELF) to carry out Bayesian inference. The ELF formalism enhances the quantum advantage in sampling as the physical hardware transitions from the regime of noisy intermediate-scale quantum computers into that of quantum error corrected ones. This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
View Patent
Hybrid Quantum-Classical Computer For Bayesian Inference With Engineered Likelihood Functions For Robust Amplitude Estimation