A Quantum Enhanced Learning Agent

A method and apparatus for generating quantum-enhanced learning agents that can be used for optimizing tasks such as time series analysis, natural language processing, reinforcement learning, and combinatorial optimization. The method may be implemented on a hybrid quantum-classical computer. A learning agent is defined having an initial state S1, a set of parameters T1, and an input X1. The set of parameters are updated iteratively based on the input X1. The updated parameter set is generated, the agent state is updated, and an output is generated. Further enhancements include unrolling the agent in time and maintaining multiple copies of the agent across multiple iterations and entangling the copies of the agents. The disclosed technology may be used for computer chip design optimization for arranging chip components on a substrate, where circuit board parameters are efficiently assembled piece by piece, instead of a single optimization solution.
View Patent
A Quantum Enhanced Learning Agent